C++ のブール式 (文法) パーサー 質問する

C++ のブール式 (文法) パーサー 質問する

ブール式を解析したい (C++)。入力形式:

a and b xor (c and d or a and b);

優先順位のルール (not、and、xor、or) を理解した上で、この式をツリーに解析したいだけです。したがって、上記の式は次のようになります。

(a and b) xor ((c and d) or (a and b));

パーサーに。

そして木は次のようになります:

                        a
                   and
                        b
               or
                        c
                   and
                        d
        xor
                   a
              and
                   b

入力はコマンドライン経由か文字列形式のいずれかになります。必要なのはパーサーだけです。

これを実行するのに役立つ情報源はありますか?

ベストアンサー1

こちらは Boost Spirit に基づいた実装です。

ブーストスピリットが生成するのは再帰降下パーサーは式テンプレート他の人が言及しているように、「特異な」優先順位のルールを尊重するのは非常に面倒です。そのため、文法にはある種の優雅さが欠けています。

抽象データ型

Boost Variant の再帰バリアント サポートを使用してツリー データ構造を定義しました。expr の定義に注意してください。

struct op_or  {}; // tag
struct op_and {}; // tag
struct op_xor {}; // tag
struct op_not {}; // tag

typedef std::string var;
template <typename tag> struct binop;
template <typename tag> struct unop;

typedef boost::variant<var, 
        boost::recursive_wrapper<unop <op_not> >, 
        boost::recursive_wrapper<binop<op_and> >,
        boost::recursive_wrapper<binop<op_xor> >,
        boost::recursive_wrapper<binop<op_or> >
        > expr;

(全文は下記)

文法規則

以下は、前述した(少し退屈な)文法定義です。

この文法は最適だとは思わないが、非常に読みやすく、静的にコンパイルされたパーサーを持っている。強く型付けされたASTデータ型約 50 行のコードです。状況はもっと悪くなる可能性があります。

template <typename It, typename Skipper = qi::space_type>
    struct parser : qi::grammar<It, expr(), Skipper>
{
    parser() : parser::base_type(expr_)
    {
        using namespace qi;
        expr_  = or_.alias();

        not_ = ("not" > simple       ) [ _val = phx::construct<unop <op_not>>(_1)     ] | simple [ _val = _1 ];
#ifdef RIGHT_ASSOCIATIVE
        or_  = (xor_ >> "or"  >> or_ ) [ _val = phx::construct<binop<op_or >>(_1, _2) ] | xor_   [ _val = _1 ];
        xor_ = (and_ >> "xor" >> xor_) [ _val = phx::construct<binop<op_xor>>(_1, _2) ] | and_   [ _val = _1 ];
        and_ = (not_ >> "and" >> and_) [ _val = phx::construct<binop<op_and>>(_1, _2) ] | not_   [ _val = _1 ];
#else
        or_  = xor_ [ _val = _1 ] >> *("or"  >> xor_ [ _val = phx::construct<binop<op_or>> (_val, _1) ]);
        xor_ = and_ [ _val = _1 ] >> *("xor" >> and_ [ _val = phx::construct<binop<op_xor>>(_val, _1) ]);
        and_ = not_ [ _val = _1 ] >> *("and" >> not_ [ _val = phx::construct<binop<op_and>>(_val, _1) ]);
#endif

        simple = (('(' > expr_ > ')') | var_);
        var_ = qi::lexeme[ +alpha ];
    }

  private:
    qi::rule<It, var() , Skipper> var_;
    qi::rule<It, expr(), Skipper> not_, and_, xor_, or_, simple, expr_;
};

注: 二項演算子で右結合になる古いルール定義を参考のために残しましたが、左結合の方が自然であるため、デフォルトで採用されています。

構文木を操作する

当然、式を評価したいでしょう。今のところは、名前付き変数のルックアップ テーブルを作成する必要がないように、印刷だけで止めることにしました :)

再帰バリアントのトラバースは最初は難解に見えるかもしれませんが、boost::static_visitor<>一度コツをつかめば驚くほど簡単です。

struct printer : boost::static_visitor<void>
{
    printer(std::ostream& os) : _os(os) {}
    std::ostream& _os;

    //
    void operator()(const var& v) const { _os << v; }

    void operator()(const binop<op_and>& b) const { print(" & ", b.oper1, b.oper2); }
    void operator()(const binop<op_or >& b) const { print(" | ", b.oper1, b.oper2); }
    void operator()(const binop<op_xor>& b) const { print(" ^ ", b.oper1, b.oper2); }

    void print(const std::string& op, const expr& l, const expr& r) const
    {
        _os << "(";
            boost::apply_visitor(*this, l);
            _os << op;
            boost::apply_visitor(*this, r);
        _os << ")";
    }

    void operator()(const unop<op_not>& u) const
    {
        _os << "(";
            _os << "!";
            boost::apply_visitor(*this, u.oper1);
        _os << ")";
    }
};

std::ostream& operator<<(std::ostream& os, const expr& e)
{ boost::apply_visitor(printer(os), e); return os; }

テスト出力:

コード内のテストケースでは、次の出力が示され、正しい(冗長な)括弧を追加して優先順位のルールを処理する:

Live On Coliru

result: ((a & b) ^ ((c & d) | (a & b)))
result: ((a & b) ^ ((c & d) | (a & b)))
result: (a & b)
result: (a | b)
result: (a ^ b)
result: (!a)
result: ((!a) & b)
result: (!(a & b))
result: ((a | b) | c)

注意してください、比較してくださいLive On Coliru, with -DRIGHT_ASSOCIATIVE

完全なコード:

Live On Coliru

#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/variant/recursive_wrapper.hpp>

namespace qi    = boost::spirit::qi;
namespace phx   = boost::phoenix;

struct op_or  {};
struct op_and {};
struct op_xor {};
struct op_not {};

typedef std::string var;
template <typename tag> struct binop;
template <typename tag> struct unop;

typedef boost::variant<var, 
        boost::recursive_wrapper<unop <op_not> >, 
        boost::recursive_wrapper<binop<op_and> >,
        boost::recursive_wrapper<binop<op_xor> >,
        boost::recursive_wrapper<binop<op_or> >
        > expr;

template <typename tag> struct binop 
{ 
    explicit binop(const expr& l, const expr& r) : oper1(l), oper2(r) { }
    expr oper1, oper2; 
};

template <typename tag> struct unop  
{ 
    explicit unop(const expr& o) : oper1(o) { }
    expr oper1; 
};

struct printer : boost::static_visitor<void>
{
    printer(std::ostream& os) : _os(os) {}
    std::ostream& _os;

    //
    void operator()(const var& v) const { _os << v; }

    void operator()(const binop<op_and>& b) const { print(" & ", b.oper1, b.oper2); }
    void operator()(const binop<op_or >& b) const { print(" | ", b.oper1, b.oper2); }
    void operator()(const binop<op_xor>& b) const { print(" ^ ", b.oper1, b.oper2); }

    void print(const std::string& op, const expr& l, const expr& r) const
    {
        _os << "(";
            boost::apply_visitor(*this, l);
            _os << op;
            boost::apply_visitor(*this, r);
        _os << ")";
    }

    void operator()(const unop<op_not>& u) const
    {
        _os << "(";
            _os << "!";
            boost::apply_visitor(*this, u.oper1);
        _os << ")";
    }
};

std::ostream& operator<<(std::ostream& os, const expr& e)
{ boost::apply_visitor(printer(os), e); return os; }

template <typename It, typename Skipper = qi::space_type>
    struct parser : qi::grammar<It, expr(), Skipper>
{
    parser() : parser::base_type(expr_)
    {
        using namespace qi;

        expr_  = or_.alias();

        not_ = ("not" > simple       ) [ _val = phx::construct<unop <op_not>>(_1)     ] | simple [ _val = _1 ];
#ifdef RIGHT_ASSOCIATIVE
        or_  = (xor_ >> "or"  >> or_ ) [ _val = phx::construct<binop<op_or >>(_1, _2) ] | xor_   [ _val = _1 ];
        xor_ = (and_ >> "xor" >> xor_) [ _val = phx::construct<binop<op_xor>>(_1, _2) ] | and_   [ _val = _1 ];
        and_ = (not_ >> "and" >> and_) [ _val = phx::construct<binop<op_and>>(_1, _2) ] | not_   [ _val = _1 ];
#else
        or_  = xor_ [ _val = _1 ] >> *("or"  >> xor_ [ _val = phx::construct<binop<op_or>> (_val, _1) ]);
        xor_ = and_ [ _val = _1 ] >> *("xor" >> and_ [ _val = phx::construct<binop<op_xor>>(_val, _1) ]);
        and_ = not_ [ _val = _1 ] >> *("and" >> not_ [ _val = phx::construct<binop<op_and>>(_val, _1) ]);
#endif

        simple = (('(' > expr_ > ')') | var_);
        var_ = qi::lexeme[ +alpha ];

        BOOST_SPIRIT_DEBUG_NODE(expr_);
        BOOST_SPIRIT_DEBUG_NODE(or_);
        BOOST_SPIRIT_DEBUG_NODE(xor_);
        BOOST_SPIRIT_DEBUG_NODE(and_);
        BOOST_SPIRIT_DEBUG_NODE(not_);
        BOOST_SPIRIT_DEBUG_NODE(simple);
        BOOST_SPIRIT_DEBUG_NODE(var_);
    }

  private:
    qi::rule<It, var() , Skipper> var_;
    qi::rule<It, expr(), Skipper> not_, and_, xor_, or_, simple, expr_;
};

int main()
{
    for (auto& input : std::list<std::string> {
            // From the OP:
            "(a and b) xor ((c and d) or (a and b));",
            "a and b xor (c and d or a and b);",

            /// Simpler tests:
            "a and b;",
            "a or b;",
            "a xor b;",
            "not a;",
            "not a and b;",
            "not (a and b);",
            "a or b or c;",
            })
    {
        auto f(std::begin(input)), l(std::end(input));
        parser<decltype(f)> p;

        try
        {
            expr result;
            bool ok = qi::phrase_parse(f,l,p > ';',qi::space,result);

            if (!ok)
                std::cerr << "invalid input\n";
            else
                std::cout << "result: " << result << "\n";

        } catch (const qi::expectation_failure<decltype(f)>& e)
        {
            std::cerr << "expectation_failure at '" << std::string(e.first, e.last) << "'\n";
        }

        if (f!=l) std::cerr << "unparsed: '" << std::string(f,l) << "'\n";
    }

    return 0;
}

ボーナス:

ボーナスポイントとして、OP に示されているのとまったく同じツリーを取得するには:

Live On Coliru

static const char indentstep[] = "    ";

struct tree_print : boost::static_visitor<void>
{
    tree_print(std::ostream& os, const std::string& indent=indentstep) : _os(os), _indent(indent) {}
    std::ostream& _os;
    std::string _indent;

    void operator()(const var& v) const { _os << _indent << v << std::endl; }

    void operator()(const binop<op_and>& b) const { print("and ", b.oper1, b.oper2); }
    void operator()(const binop<op_or >& b) const { print("or  ", b.oper2, b.oper1); }
    void operator()(const binop<op_xor>& b) const { print("xor ", b.oper2, b.oper1); }

    void print(const std::string& op, const expr& l, const expr& r) const
    {
        boost::apply_visitor(tree_print(_os, _indent+indentstep), l);
        _os << _indent << op << std::endl;
        boost::apply_visitor(tree_print(_os, _indent+indentstep), r);
    }

    void operator()(const unop<op_not>& u) const
    {
        _os << _indent << "!";
        boost::apply_visitor(tree_print(_os, _indent+indentstep), u.oper1);
    }
};

std::ostream& operator<<(std::ostream& os, const expr& e)
{ 
    boost::apply_visitor(tree_print(os), e); return os; 
}

結果:

            a
        and 
            b
    or  
            c
        and 
            d
xor 
        a
    and 
        b

おすすめ記事