C++ で非素集合 (Union Find) を実装する 質問する

C++ で非素集合 (Union Find) を実装する 質問する

私はクラスカルのアルゴリズムで使用するために Disjoint Sets を実装しようとしていますが、それをどのように実行すべきか、特にツリーの森をどのように管理すべきかを正確に理解するのに苦労しています。Disjoint Sets の Wikipedia の説明とアルゴリズム入門 (Cormen 他) の説明を読んだ後、次のことを思いつきました。

    class DisjointSet
    {
    public:
        class   Node 
        {
        public:
            int         data;
            int         rank;

            Node*       parent;

            Node() : data(0), 
                     rank(0),
                     parent(this) { } // the constructor does MakeSet
        };

        Node*   find(Node*);
        Node*   merge(Node*, Node*); // Union
    };


    DisjointSet::Node*   DisjointSet::find(DisjointSet::Node* n)
    {
        if (n != n->parent) {
            n->parent = find(n->parent);
        }
        return n->parent;
    }

    DisjointSet::Node* DisjointSet::merge(DisjointSet::Node* x,
                                          DisjointSet::Node* y)
    {
        x = find(x);
        y = find(y);

        if (x->rank > y->rank) {
            y->parent = x;
        } else {
            x->parent = y;
            if (x->rank == y->rank) {
                ++(y->rank);
            }
        }
    }

しかし、これは不完全であり、何かが欠けていると確信しています。

アルゴリズム入門では、木の森があるはずだと書かれていますが、この森の実用的な実装については何も説明されていません。私はCS 61B講義31: 分離集合 (http://www.youtube.com/watch?v=wSPAjGfDl7Q) そしてここで講師は、フォレストとそのすべてのツリーと値の両方を格納するために配列のみを使用しています。私が言及したように、明示的な「ノード」タイプのクラスはありません。また、この手法を使用している他の多くのソースも見つけました (複数のリンクを投稿することはできません)。喜んでこれを実行しますが、これは検索に配列のインデックスに依存しており、int 以外のタイプの値を格納したいため、別のものを使用する必要があります (std::map が思い浮かびます)。

私がよくわからないもう 1 つの問題は、C++ を使用しているためメモリ割り当てです。ポインターのツリーを保存しており、MakeSet 操作は new DisjointSet::Node; になります。現在、これらのノードには親へのポインターしかないため、ツリーの下部を見つける方法がわかりません。ツリーをトラバースして、すべての割り当てを解除するにはどうすればよいでしょうか。

このデータ構造の基本的な概念は理解していますが、実装については少し混乱しています。アドバイスや提案があれば大歓迎です。よろしくお願いします。

ベストアンサー1

決して完璧な実装ではありませんが (結局は私が書いたのです!)、これは役に立ちますか?

/***
 * millipede: DisjointSetForest.h
 * Copyright Stuart Golodetz, 2009. All rights reserved.
 ***/

#ifndef H_MILLIPEDE_DISJOINTSETFOREST
#define H_MILLIPEDE_DISJOINTSETFOREST

#include <map>

#include <common/exceptions/Exception.h>
#include <common/io/util/OSSWrapper.h>
#include <common/util/NullType.h>

namespace mp {

/**
@brief  A disjoint set forest is a fairly standard data structure used to represent the partition of
        a set of elements into disjoint sets in such a way that common operations such as merging two
        sets together are computationally efficient.

This implementation uses the well-known union-by-rank and path compression optimizations, which together
yield an amortised complexity for key operations of O(a(n)), where a is the (extremely slow-growing)
inverse of the Ackermann function.

The implementation also allows clients to attach arbitrary data to each element, which can be useful for
some algorithms.

@tparam T   The type of data to attach to each element (arbitrary)
*/
template <typename T = NullType>
class DisjointSetForest
{
    //#################### NESTED CLASSES ####################
private:
    struct Element
    {
        T m_value;
        int m_parent;
        int m_rank;

        Element(const T& value, int parent)
        :   m_value(value), m_parent(parent), m_rank(0)
        {}
    };

    //#################### PRIVATE VARIABLES ####################
private:
    mutable std::map<int,Element> m_elements;
    int m_setCount;

    //#################### CONSTRUCTORS ####################
public:
    /**
    @brief  Constructs an empty disjoint set forest.
    */
    DisjointSetForest()
    :   m_setCount(0)
    {}

    /**
    @brief  Constructs a disjoint set forest from an initial set of elements and their associated values.

    @param[in]  initialElements     A map from the initial elements to their associated values
    */
    explicit DisjointSetForest(const std::map<int,T>& initialElements)
    :   m_setCount(0)
    {
        add_elements(initialElements);
    }

    //#################### PUBLIC METHODS ####################
public:
    /**
    @brief  Adds a single element x (and its associated value) to the disjoint set forest.

    @param[in]  x       The index of the element
    @param[in]  value   The value to initially associate with the element
    @pre
        -   x must not already be in the disjoint set forest
    */
    void add_element(int x, const T& value = T())
    {
        m_elements.insert(std::make_pair(x, Element(value, x)));
        ++m_setCount;
    }

    /**
    @brief  Adds multiple elements (and their associated values) to the disjoint set forest.

    @param[in]  elements    A map from the elements to add to their associated values
    @pre
        -   None of the elements to be added must already be in the disjoint set forest
    */
    void add_elements(const std::map<int,T>& elements)
    {
        for(typename std::map<int,T>::const_iterator it=elements.begin(), iend=elements.end(); it!=iend; ++it)
        {
            m_elements.insert(std::make_pair(it->first, Element(it->second, it->first)));
        }
        m_setCount += elements.size();
    }

    /**
    @brief  Returns the number of elements in the disjoint set forest.

    @return As described
    */
    int element_count() const
    {
        return static_cast<int>(m_elements.size());
    }

    /**
    @brief  Finds the index of the root element of the tree containing x in the disjoint set forest.

    @param[in]  x   The element whose set to determine
    @pre
        -   x must be an element in the disjoint set forest
    @throw Exception
        -   If the precondition is violated
    @return As described
    */
    int find_set(int x) const
    {
        Element& element = get_element(x);
        int& parent = element.m_parent;
        if(parent != x)
        {
            parent = find_set(parent);
        }
        return parent;
    }

    /**
    @brief  Returns the current number of disjoint sets in the forest (i.e. the current number of trees).

    @return As described
    */
    int set_count() const
    {
        return m_setCount;
    }

    /**
    @brief  Merges the disjoint sets containing elements x and y.

    If both elements are already in the same disjoint set, this is a no-op.

    @param[in]  x   The first element
    @param[in]  y   The second element
    @pre
        -   Both x and y must be elements in the disjoint set forest
    @throw Exception
        -   If the precondition is violated
    */
    void union_sets(int x, int y)
    {
        int setX = find_set(x);
        int setY = find_set(y);
        if(setX != setY) link(setX, setY);
    }

    /**
    @brief  Returns the value associated with element x.

    @param[in]  x   The element whose value to return
    @pre
        -   x must be an element in the disjoint set forest
    @throw Exception
        -   If the precondition is violated
    @return As described
    */
    T& value_of(int x)
    {
        return get_element(x).m_value;
    }

    /**
    @brief  Returns the value associated with element x.

    @param[in]  x   The element whose value to return
    @pre
        -   x must be an element in the disjoint set forest
    @throw Exception
        -   If the precondition is violated
    @return As described
    */
    const T& value_of(int x) const
    {
        return get_element(x).m_value;
    }

    //#################### PRIVATE METHODS ####################
private:
    Element& get_element(int x) const
    {
        typename std::map<int,Element>::iterator it = m_elements.find(x);
        if(it != m_elements.end()) return it->second;
        else throw Exception(OSSWrapper() << "No such element: " << x);
    }

    void link(int x, int y)
    {
        Element& elementX = get_element(x);
        Element& elementY = get_element(y);
        int& rankX = elementX.m_rank;
        int& rankY = elementY.m_rank;
        if(rankX > rankY)
        {
            elementY.m_parent = x;
        }
        else
        {
            elementX.m_parent = y;
            if(rankX == rankY) ++rankY;
        }
        --m_setCount;
    }
};

}

#endif

おすすめ記事